# How do you determine genotype frequencies in Hardy Weinberg equilibrium?

Contents

The frequency of genotype AA is determined by squaring the allele frequency A. The frequency of genotype Aa is determined by multiplying 2 times the frequency of A times the frequency of a. The frequency of aa is determined by squaring a. Try changing p and q to other values, ensuring only that p and q always equal 1.

## How do you find the genotype frequency of Hardy-Weinberg?

To calculate the allelic frequencies we simply divide the number of S or F alleles by the total number of alleles: 94/128 = 0.734 = p = frequency of the S allele, and 34/128 = 0.266 = q = frequency of the F allele.

## How is the Hardy-Weinberg equation used to predict the frequency of genotypes in a population?

In the equation, p2 represents the frequency of the homozygous genotype AA, q2 represents the frequency of the homozygous genotype aa, and 2pq represents the frequency of the heterozygous genotype Aa. In addition, the sum of the allele frequencies for all the alleles at the locus must be 1, so p + q = 1.

## How do you determine Hardy-Weinberg equilibrium?

To know if a population is in Hardy-Weinberg Equilibrium scientists have to observe at least two generations. If the allele frequencies are the same for both generations then the population is in Hardy-Weinberg Equilibrium.

## What is the frequency of a dominant allele?

The frequency of the dominant allele in the population. Answer: The frequency of the dominant (normal) allele in the population (p) is simply 1 – 0.02 = 0.98 (or 98%). The percentage of heterozygous individuals (carriers) in the population.

## What do PQ p2 2pq and q2 represent?

p2 +2pq + q2 = 1 Where p2 represents the frequency of the homozygous dominant genotype, q2 represents the frequency of the recessive genotype and 2pq is the frequency of the heterozygous genotype.

## Why is there a 2 in 2pq?

The term p2 represents the frequency of dominant homozygotes (AA) and the term q2 represents the frequency of recessive homozygotes (aa). p represents the allele frequency of allele A, and q represents the allele frequency of the allele a.

## What are the factors affecting Hardy-Weinberg equilibrium?

-Factors affecting the Hardy-Weinberg equilibrium are:

• Mutations: – These are sudden, large, and inheritable changes in the genetic material can occur in all directions. …
• Recombinations during Sexual Reproduction: …
• Genetic Drift: …
• Gene migration: